Ab initio molecular geometries and vibrational frequencies of various isolated vanadate species (VO3−4, HVO2−4, H2VO−4, and V2O4−7) were calculated using different pseudopotentials. The relative merits of these were assessed by comparing the calculated molecular parameters with the corresponding values obtained from calculations at all-electron levels and, whenever available, from X-ray studies for the salts. The calculations were extended to higher oligomers (V3O5−10, V4O6−13, and V4O4−12) using the pseudopotential whose basis functions are (10s5p5d)/[2s1p1d] (55/5/5) on vanadium and (4s4p)/[2s2p] (31/31) on oxygen, which yielded the best compromise between accuracy and computational effort. The results indicate a linear centrosymmetric geometry for the isolated V2O4−7 anion. The higher oligomers have less than 180° V(SINGLE BOND)O(SINGLE BOND)V angles, except the noncyclic tetraoligomer which has a linear central V(SINGLE BOND)O(SINGLE BOND)V angle (180°). The cyclic V4O4−12 species presents a planar structure with all the vanadium and bridging oxygen atoms in the same plane. This structure was alrea dy reported for the [(CH3)CNH3][V4O12] salt. The results suggest a lower stability of the linear V4O6−13 species, in agreement with previous reports.
P. J. A. Ribeiro-Claro, Ana M. Amado, and J. J. C. Teixeira-Dias.
Phone: +351 234-370-732
To provide the best experiences, we use technologies such as cookies to store and/or access information on your device. Consent to these technologies will allow us to process data such as browsing behavior or unique IDs on this website. Not consenting or withdrawing consent may negatively affect certain features and functions.