A regular MCM-41 type mesostructured silica was used as a support for the incorporation of the highly luminescent tris(β-diketonate) complex Eu(tta)3ephen yielding the hybrid MCM–Eu material. Suitable characterization by powder X-ray diffraction (XRD), thermogravimetric analyses (TGA), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), 13C and 21Si solid state NMR spectroscopy and photoluminescence was accomplished. The combination of ultraviolet-visible spectroscopy (UV-Vis) and photoluminescence techniques shows that the complex incorporation seems to modify essentially the second Eu3+ coordination shell. For a material that has a simply impregnated lanthanide complex, the herein reported maximum 5D0 quantum yield value of 0.31 is a significantly high value, being almost in the same scale of the values obtained for the materials with covalently bonded complexes. A detailed theoretical photoluminescence study of the MCM–Eu with the recently developed Luminescence Package – LUMPAC is presented. The high accuracy of the theoretical calculations is achieved through the comparison with the experimental values. Aiming at a deeper understanding of the photoluminescence process, the ligand-to-Eu3+ intramolecular energy transfer and back-transfer rates were also predicted. The dominant pathway involves the energy transfer between the lowest energy ligand triplet and the 5D0 level (9.70 × 107 s−1).
Felicio, M. R.; Nunes, T. G.; Vaz, P. M.; Botas, A. M. P.; Ribeiro-Claro, P.; Ferreira, R. A. S.; Freire, R. O.; Vaz, P. D.; Carlos, L. D.; Nunes, C. D.; Nolasco, M. M.
Phone: +351 234-370-732
To provide the best experiences, we use technologies such as cookies to store and/or access information on your device. Consent to these technologies will allow us to process data such as browsing behavior or unique IDs on this website. Not consenting or withdrawing consent may negatively affect certain features and functions.