FT-Raman spectroscopy turns out to be a powerful technique to evaluate the amount of polymorphic and pseudopolymorphic forms in crystalline samples – which is particularly relevant in pharmaceutical sciences. This paper presents a methodology that allows successful quantitative evaluation of the solid-state hydration and dehydration processes, using FT-Raman spectroscopy. All the steps required for a reliable evaluation of the hydration/dehydration process are illustrated for the caffeine system, a particularly challenging system presenting limited spectral differences between the pseudopolymorphs. The hydration process of caffeine was found to occur in a single-step process with a half-life time of ca 13 h, while the dehydration occurs through a two-step mechanism. The critical relative humidity was found to be at ca 81 and 42% for anhydrous and hydrate caffeine forms, respectively.
Nolasco, Mariela; Amado, Ana; Ribeiro-Claro, Paulo.
Phone: +351 234-370-732
To provide the best experiences, we use technologies such as cookies to store and/or access information on your device. Consent to these technologies will allow us to process data such as browsing behavior or unique IDs on this website. Not consenting or withdrawing consent may negatively affect certain features and functions.